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Dynamical ansatz for path integrals and nonperturbative trace formulas

Yu. A. Dabaghian
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

~Received 17 December 1998!

It is shown that a recently discovered representation of the Green’s function is equivalent to a certain
‘‘dynamical ansatz’’ for the corresponding path integral, which brings about a convenient method of nonper-
turbative approximations. Based on this observation, a set of nonperturbative approximations to the trace of the
Green’s function is established.@S1063-651X~99!06805-1#

PACS number~s!: 05.45.Mt, 11.15.Tk, 03.65.Db
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I. INTRODUCTION

In order to determine the energy spectrum of a quan
system one considers the trace of its Green’s function

G~E!5E G~x,xuE!dx,

which, in terms of a Feynman path integral formalism,
given by a sum over all the closed paths in the configu
tional space. In the semiclassical limit\→0, this sum re-
duces to the one over all the closedclassical trajectories
@5–7#:

Gqcl~E!5 (
per.orbits

eiScl1 in

Adet~12M p!
.

Here Scl is the classical action functional evaluated on
orbit g andM p is the stability matrix of that orbit.

Inasmuch as the basic tool of the analysis of the semic
sical behavior, the semiclassical traceGqcl(E), is built from
a set of classical objects, one would expect to be able to t
the correspondence of certain quantum properties to the
namical features of the corresponding classical system.

However, this correspondence and the above formula
valid only in the limit \→0. An interesting question is
whether it is possible to go beyond this limit and to obta
some\Þ0 approximations to the exact quantum trace wi
out using perturbative techniques; whether it is possible
extend the sum from the set of classical orbits to some la
set of paths to produce a consistent approximation to
exact trace outside the limit\→0.

II. THE GREEN’S FUNCTION

The starting point of the following discussion is a repr
sentation of the causal Green’s function, obtained recentl
publications@1#, and presented here using the example
Dirac’s equation. The derivation of this representation in@1#
was based on the Schwinger-Fradkin representation
Green’s function@2,3#. For a particle of a massm and charge
g moving in the external field with vector potentialAm such
a Green’s function can be written in terms of a function
integral over the velocityvm(s) of the particle as
PRE 601063-651X/99/60~1!/324~11!/$15.00
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GA~x,y!5 i E
0

`

dse2 ism2
NE Dve~ i /4!*0

svm
2

~s8!ds8

3Fm2 igmS pm2
e

c
AmD G

3e2 ig*0
sds8vm~s8!Am~y2*0

s8v !

3dS x2y1E
0

s8
v D .

Here N is the normalizing coefficient N21

5*Dve( i /4)*0
svm

2 (s8)ds8. One can use thed(x2y1*0
s8v) to

write the previous formula in terms of the path integral:

GA~x,y!5 i E
0

`

dse2 ism2
NE DXme~ i /4!*gẊm

2 ds8

3Fm2 igmS pm2
e

c
AmD Ge2 ig*0

sdXmAm~X!, ~1!

where a pathg connects the initialXm(0) and the final
Xm(s) points of the evolution.

The representation in terms of a functional path integra
given by

Gc~p,p8!5 i E
0

`

dse2 im2sE DXm

3E Djme2 i *g~Ẋm/41jm!dXmeiqm/2„Xm~s!1Xm~0!…

3~e2g*sF~X!!1d„Xm2 f m
s ~X,A,jm!…

3H m2 igmS 1

2
Ẋm1

qm

2
1jmD J . ~2!

Herejm5jm(s) is a certain auxiliary function, and the argu
ment of thed functional is defined by the formal dynamica
flow generated by the dynamical system,

dXm

ds
5pm1pm8 22jm~s!22gAm~X!, ~3!

the time integral of these equations,
324 ©1999 The American Physical Society
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Xm~s!5Xm~0!1~pm1pm8 !s22E
0

s

jmds822gE
0

s

Am~X!ds8

[ f m
t ~X,A,j!.

The connection between the representation~2! and the
standard one can be easily established. Using the fact tha
argument of thed functional,

d„Xm~s!2 f m
t ~X,A,j!…, ~4!

is linear injm , one can immediately perform the function
integration over jm . The determinant det@d„xm
2 f m(x,j,A)…/djn#51, and hence, inserting

jm5
pm1pm8

2
2gAm~X!2

1

2
Ẋm ~5!

into the phase*g(Ẋm/41jm)dXm , one gets

S5E
g
S Ẋm

4
1

pm1pm8

2
2gAm~X!2

1

2
ẊmD dXm

5E
g
S 2

Ẋm

4
1

pm1pm8

2
2gAm~X! D dXm

52E
g
S Ẋm

4
1gAm~X! D dXm1

pm1pm8

2
DXm .

Combining the last term2 i (pm1pm8 /2)DXm with the similar
phaseiqm@Xm(s)1Xm(0)2#, one gets

2
pm1pm8

2
„Xm~s!2Xm~0!…1

pm2pm8

2
„Xm~s!1Xm~0!…

5pmXm~0!2pm8 Xm~s!,

which brings us to

Gc5 i E
0

`

dsE DXme2 im2s

3ei *g„Ẋm/41gAm~X!…dXme2 i „pm8 Xm~s!2pmXm~0!…

3$m2 igm„pm2gAm~X!…%~e2g*sF~X!!1 . ~6!

The exponentiale2 i „pm8 Xm(s)2pmXm(0)… is essentially a re-
minder of the fact that Green’s function is in the momentu
representation,Gc5Gc(p,p8). In coordinate representatio
one would obviously have the standard expression~1! for
Gc(x,y):

Gc5 i E
0

`

dsE DXme2 im2sei *g„Ẋm/41gAm~X!…dXm

3$m2 igm„pm2gAm~X!…%~e2g*sF~X!!1 , ~7!

whereg(s) is a path connectingx5Xm(0) and y5Xm(s).
As one can see, the equivalency of the representation to
standard one is quite straightforward.
the

he

The constraint~4! actually provides another possible wa
to represent the Green’s function, since one can conside
phase of the exponential in Eq.~2! modulo this constraint.
Proceeding as before, one gets, using Eq.~5!;

Gc5 i E
0

`

dsE DXmE Djme2 im2sei *g „Ẋm/41gAm~X!…dXm

3e2 i „pm8 Xm~s!2pmXm~0!…d„Xm2 f m
s ~X,A,j!…

3$m2 igm„pm2gAm~X!…%~e2g*sF~X!!1 . ~7a!

Although the latter expression still contains thed functional
and the integral overjm was not taken yet, it bears a ver
close resemblance to the standard representation~1!, and,
therefore, it will be convenient for various purposes to co
sider the representation~7b! along with the original:

Gc5 i E
0

`

dsE DXmE Djm

3e2 im2se2 i *g ~Ẋm/41jm!dXme~ iqm/2!„Xm~s!1Xm~0!…

3~e2g*sF~X!!1d„Xm2 f m
s ~X,A,a!…

3H m2 igmS 1

2

dXm

ds
1

qm

2
1

dRm

ds D J , ~7b!

The expression~7a! could be obtained from the original~1!
by inserting a ‘‘unity decomposition,’’

15E Djmd„Xm~s!2 f m
t ~X,A,j!…,

into the integrand. A representation equivalent to Eq.~2! was
rigorously derived in@1#. However, one can think of it as o
a certain ansatz, or an analytical trick that allows one to br
to light certain remarkable properties and physically int
pretable structures of the functional integral. Due to t
d„Xm(s)2 f m

t (X,A,j)… constraint, one enjoys a very speci
feature of the representation, namely, that every p
g:$Xm(s8),0<s8<s% in Eq. ~2! is a solutionto a certain set
of dynamical equations~3!. This circumstance allows one t
consider every path on the configurational space from a
tain dynamical point of view. It should be emphasized he
that although this statement might seem restrictive, ev
path in configurational space contributes to the integrals~2!
and ~6!. Indeed, for every pathg:Xm(s8),0<s8<T, the ex-
pression

dXm~s8!

ds8
1gAm„X~s8!…[

pm1pm8

2
2jm„X~s8!…

defines a certain functionjm(s8) of s8 on the interval 0
<s8<s, which corresponds to that particular path.

Although Eq.~7a! is seemingly very similar to the stan
dard representation, it in fact allows one to establish a n
perspective on the question of evaluating the functional in
gral via an uncommon sequence of nonperturbative appr
mations.
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III. APPROXIMATIONS

If it turns out to be impossible to explicitly evaluate th
functional integral~1!, one starts to apply various approx
mation techniques. The only approach that the original fu
tional integral~1! naturally suggests is to look for the po
sible perturbative expansions near the saddle point of
phase. The saddle point itself, which corresponds to the
roth order of perturbative expansion, describes the semic
sical regime@4#. All the higher orders of the perturbatio
series allow one to consider the vicinity of the saddle po
Physically speaking, a perturbative expansion represen
certain way to introduce quantum fluctuations into the s
tem.

On the other hand, when facing the need to apply a cer
perturbation technique, one has to chose the approach th
appropriate in a given physical situation. It is the characte
the dynamics~classical or quantum! of the system in ques
tion that justifies the means of approximation. The pertur
tion techniques that are based on approximating the ac
functional near the saddle point might not be appropriate
some cases. By applying ‘‘perturbative’’ methods where
whole interaction~or just a part of it, such as the higher-ord
nonlinear terms in the action! are considered as a perturb
tion, one has to assume some kind of regularity of the
namics, which should allow one to consider sequentially d
ferent parts of interaction. However, in some cases, suc
the ones of the chaotic systems, one cannot make this
sumption. All of the terms are essential in determining
global dynamical characteristics of the system. By using
perturbative methods one can unwillingly average off or
stroy the evidence of some effects.

There exist methods, such as Gutzwiller’s trace formu
that allow one to consider the saddle point in all its compl
ity, but they do not extend beyond the\50 point—unless
the same old perturbative techniques are used. It is diffi
to go further than the semiclassical description of
Green’s function if one would need is to use some nonp
turbative techniques. As it turns out, the representation~7a!
suggests a simple set of nonperturbative approximatio
which are described below.

The Fourier series expansion of the auxiliary functi
jm(t),

jm~t!5
1

AT
(
n50

N

„Pm,n cos~vnt!1Qm,n sin~vnt!…,

vn5v~n11/2!, v5
2p

T
, ~8!

defines a set of the coefficientsPm,n . The frequency setvn
5(2p/T)(n11/2) emerged in the regrows derivation@1#. In
terms of the expansion~8!, the functional integration ove
the jm in Eqs. ~7a! and ~7b! should be understood as a
integration over all the expansion coefficientsPm,n :

E Djm[E •••E PnPm51
4 dPm,ndQm,n

2p
.

As is easy to see from Eq.~7a!, if one uses this measur
of the functional integration overjm , there exists a remark
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able possibility of dropping thePn dependence in Eq.~7a!
@and consequently in Eq.~7b!# for anyn’s, without changing
the overall structure of these formulas. Such ‘‘structural
variance’’ is very convenient. For instance, it implies t
possibility to approximate the functionjm(t) by it’s Fourier
polynomialjm

N(t) of the degreeN by dropping all the coef-
ficientsPn in Eq. ~7! for unu.N:

jm
N~t!5

1

AT
(
n50

N

„Pm,n cos~vnt!1Qm,n sin~vnt!….

Consequently, the exact phase of the integrand of Eq.~7a!
would be replaced by a certain ‘‘Fourier-type’’ approxim
tion,

S[E
g
S Ẋm

4
1jm~s! D dXm→SN[E

g
S Ẋm

4
1jm

N~s! D dXm ,

and thus one would obtain a nontrivial sequence of appro
mations to the Green’s function. The indexn enumerating
the variablesPn is not a perturbative index, and so the
approximations are nonperturbative. Omitting the variab
Pn in the argument of thed constraint implies that the pat
integration in Eq.~7a! or in Eq.~7b! is restricted to the paths
that are the solutions to the system,

dXm

dt
1gAm~X!5

pm1pm8

2
1

1

AT
(
n50

N

„Pm,n cos~vnt!

1Qm,n sin~vnt!…. ~9!

Hence, by approximating the ‘‘action’’ functionalS, one
gets certain approximationsGN(x,y) to the exact Green’s
function. These approximations converge to the ex
Green’s function@1# in the limit N→`,

Gc~x,y!5 lim
N→`

GN~x,y!,

as soon asjm
N converges tojm .

If all the Pn’s are dropped in expressions~2! and~7!, one
gets a semiclassical approximation for which the path in
gration goes over the solutions to the classical ‘‘map,’’ E
~4! and ~3! with jm50:

m
dxm

dt
2pm2gAm~x!50,

wheret52ms is the proper time of the particle. Assumin
that the particle is on its mass shell, one can also write tht
derivative of the last equation in terms of the electromagn
field tensorFmn as

d2xm

d2t
2gFmn

dxn

dt
50.

In general, the possibility of sequentially dropping thePn
dependence in Eq.~4!, that is to say, of introducing the quan
tum fluctuations gradually, allows one to make some clo
observations of the corresponding quantum dynamics.
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Another way to look at the possibility of approximatin
the Green’s function by using a certain Fourier polynom
of jm(t) is to say that the approximating procedure induc
an ordering among the configurational space paths. Acc
ing to the amount of contribution theg ’s make to the integra
~2!, one can introduce a partition of the total path setG(M )
as the following: a pathg:$Xm(t),0<t<T% in the configu-
rational space will belong to a setGN,G(M ) if it satisfies
the constraint

dXm

dt
1gAm~X!5

pm1pm8

2
1

1

AT
(
n50

N

„Pm,n cos~vnt!

1Qm,n sin~vnt!…

for somefinite numberN of harmonics and arbitrary value
of the coefficientsPn . Obviously, the setG0, obtained by
keeping onlyP05pm1pm8 /2, while Pn50 for n.0, corre-
sponds to the totality of the classical trajectories of the s
tem. The corresponding eikonal approximation is just
semiclassical Green’s function. The next approximation
will correspond toPn50,n.1, in which case, in order to
evaluate theG1(x,y) one should consider all the paths th
satisfy

dXm

dt
1gAm~X!5

pm1pm8

2
1

1

AT
„Pm,1 cos~v1t!

1Qm,1 sin~v1t!…,

for all possible values2`<P1 ,Q1<`. The next approxi-
mation G2 requires two harmonics (P1 ,Q1 ,P2 ,Q2)Þ0,
with the previous case corresponding to the particular par
eter value subset (P25Q250) and so on. Obviously
G0,G1,G2•••,GN,•••,GP[G(M ).

It is important to mention that from the point of view o
the dynamics of the effective system~7a!, adding the terms

jm5
1

2AT
(

n52N

N

Pm,neivnt

[
1

AT
(
n50

N

„Pm,n cos~vnt!1Qm,n sin~vnt!…

to the right-hand sides of the classical dynamical equati
certainly changes their dynamical behavior. For example
can destroy the integrability of the classical equations,

dXm

dt
1gAm~X!5

pm1pm8

2
, ~10!

and in general, the geometry of the trajectories of Eq.~10!
can be completely different from that of the solutions to E
~9!. In the first approximation, along with classical solutio
to Eq. ~9!, (Pn50) one also considers more complicat
paths that correspond to the solutions to Eq.~9! for
(Pn ,Qn)Þ0,n.1. The more harmonics that are kept in E
~9!, the more geometrically complicated paths can oc
among the solutions to Eq.~9!, and in the limitN→` all the
paths gPG`[G(M ) contribute. What is important, how
l
s
d-

-
e
et

-

s
it

.

.
r

ever, is that one naturally obtains an ordering of the pa
according to their complexity.

Remarkably, the functionjm was introduced in such a
way that it does not contain any particular characteristics
the underlying classical system; so it is a universal syst
an independent way to introduce quantum fluctuatio
Physically one can visualize the effect of the ‘‘quasipote
tial’’ jm (Pn’s and Qn’s! by imagining that the particle is
moving in a field of many infinitely uniform waves~7a!,
added to the background potential. Since one can consid
simplified dynamics by leaving only a finite number ofPn’s
andQn’s in Eq. ~4!, it is possible to introduce the quantum
fluctuations ‘‘gradually’’ into a system.

IV. APPLICATIONS: THE TRACE FORMULAS

One of the most important features of a quantum sys
is the distribution of the energy levels. The distribution
these levels is expected to be different depending on whe
the underlying classical system is chaotic or integrable.
work with the energy level distribution, it is convenient
introduce the quantity

G~E!5Tr
1

Ĥ2E
5Tr G~x,yuE!5E G~x,xuE!dx

5(
n

1

En2E
. ~11!

In most of the cases, especially in the nonintegrable on
the explicit dependence of the energy levels on quan
numbers is unknown. In such cases the latter expression
vides an~essentially unique! method of finding the eigenval
ues ofĤ as the poles of the functionG(E), if one manages
to evaluate it in some other way.

There exist several methods of finding the traceG(E) in
the \→0 limit @6#. The most acknowledged among them
perhaps, Gutzwiller’s trace formula, which states that in
quasiclassical limit,G(E) is given by

Gqcl~E!5 (
per.orbits

1

Adet~12M p!
eiScl1 in, ~12!

whereM is the stability matrix of the dynamical flow of th
classical equations (dScl50) andn is the Maslov index@5#.

There exists an alternative approach discussed by C
tanovićand others@7#, who proposed to consider the trace
the classical transfer operator

Lt5AuL t~x!ue2 iSt~x!/\1nd„y2 f t~x!…,

wherey5 f t(x) is the dynamical flow of the system corre
sponding to the actionSt(x) and L t(x) is the expanding
eigenvalue of the Jacobian transverse to the flow. Due to
s functional, the trace of the operatorLt contains

1/det~12M p! ~13!

instead of 1/Adet(12M p) as in Gutzwiller’s formula@7#,
which affects the convergence rate of the sum over the c
sical orbits. An expression containing~13! was introduced in
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@7# as a regularization fo the sum~12!, where the power of
the pre-exponential factor was changed to improve the c
vergence properties of~12! and the analyticity of the trace
G(E).

Conveniently, the possibility of dropping certain coef
cientsPn,Qn in the formulas~2!, ~7a! or ~7b! while keeping
the d-functional constraint, allows one to derive the tra
formulas for the successive approximationsGN(x,yuE),

GN~E!5Tr GN~x,yuE!

to approximate the exact trace TrG(x,yuE).
For the 0th approximationPn5Qn50, one gets from Eq

~7b!:

Tr G05 i Tr E
0

`

dte2 i tm R DXmei r„mẊm/21gAm~X!…dXm

3d„Xm2 f m
t ~X,A,j50!…

3$m2 igm„gAm~X!1pm…%~e2grsmnFnm~X!!1 .

Here all the paths satisfyXm(0)5Xm(T). Sincesmn is qua-
dratic in Dirac matricesgm , the expansion ofe2g*smnFnm in
the previous expression, combined with the fac
gm„gAm(X)1pm8 …, produces only odd powers ofgm , which
have zero trace. Due to thed functional the path integration
goes over the solutions to the equations equivalent to
classical equations of motion:

dxm

ds
1pm2gAm~x!50. ~14!

Integrating over the classical periodic orbitsgPG0, one gets

Tr G05 i Tr E
0

`

dte2 i tm R DXmei r~mẊm/21gAm!dXm

3d„Xm2 f m
t ~j50!…~e2grsmnFnm!1

5 (
clos.P.O.

1

det~12M p
~0!!

e2 iS2 in

[ (
P.OPG0

1

det~12M p
~0!!

e2 iS2 in, ~15!

where

S5 R
g
S m

2
1

mẊm
2

2
1gAm~X!Ẋm1gsmnFnm~X! D dt

is the action, andMmn
(0) is the stability matrix given by the

flux of the equations~14!, evaluated along each periodic o
bit gPG0. The pre-exponential determinant appeared na
rally after integration over the pathDXm .

This result formally resembles the trace formula
Cvitanovićand others@7#. The next approximation forG1(p)
will produce in the same way

Tr Gc
~1!5 (

P.OPG1

1

det~12M p
~1!!

e2 iS2 in1, ~16!
n-

r

e

-

f

and in general, one gets

Tr Gc
~N!5 (

P.OPGN

1

det~12M p
~N!!

e2 iS2 inN, ~17!

whereM p
(N) is the stability matrix evaluated along the pe

odic orbits of the system~9!.

V. SUMMARY

The representations~7a! and~7b! are quite remarkable in
many respects. First, due to the ‘‘effective dynamical syst
constraint’’ ~3!, the path integration always goes along t
solutions to a certain dynamical system. Although for t
exact representation this constraint is merely formal, sinc
does not actually narrow the set of paths used to evaluate
path integrals~7a! and ~7b!, it is very essential for the ap
proximationsGN . There it becomes quite tangible, becau
the set of paths satisfying the condition~9! for N,` is a
small subset of the total setG of the configurational space
paths. SinceGN’s converge rapidly to the exact Green
function, this observation allows one to group the paths
subsetsGN according to the significance of the contributio
they make to the integrals~7a! and~7b!. As can be seen from
the representation~7a!, the approximationsGN are nonper-
turbative and, therefore, they can be quite valuable tools
dealing with specific physical problems, such as those
quantum chaos. The usual tools for such analysis, the t
formulas, can be derived easily for every approximationGN .
It should be emphasized that the semiclassical trace form
~15! as well as its\Þ0 generalizations~16! and ~17! were
obtained using strictly nonperturbative techniques. Althou
there exist certain WKB-type approximations to the Gree
function for \Þ0 case@8#, they all come in the form of
perturbation series in the powers of\. A common shortcom-
ing of such perturbative approximations are poor conv
gence properties and the lack of a clear geometrical inter
tation of the expansion terms—except for the zeroth or
term, the pure semiclassical case. Also, as was pointed o
@1#, from a physical point of view such methods might not
adequate to describe certain features of quantum syst
Perturbative approaches, based on expansions of the f
tional integral near the saddle point, can destroy the evide
of certain dynamical effects, such as~quantum! chaos. On
the other hand, a completely different approximation pr
ciple obtained in publications@1# allows one to get a se
quence of approximations to the Green’s function, witho
losing a geometrical perspective on the problem.

APPENDIX A: A DERIVATION
OF THE REPRESENTATION „I …

Here we present the derivation of the expression~7a!,
following the notations of@1# and @3#.

One writes the expression for Green’s function in the m
mentum representation:



e-

nt
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Gc~p,p8uA!5 i E
0

`

dsE d4ze2 ism22 iqz1~ isq2/4!Pn

3E E d4Pnd4Qn

~2p!4
e~ i /2!~Pn

2
1Qn

2
!

3E DVme2 i *0
s
~p2V!2ds8

3e2g*0
sds8~]/]zm!Am~z~s!22*0

sds8V!

3$m2 igm@pm2Vm#%

3~e2g*sF„z~s!22*0
sds8V…!1 , ~A1!

whereVm(s) satisfies the constraint~4!

fm~V,A![Vm~s8!2gAmS z~s8!22E
0

s8
ds9V~s9! D 50.

The zm(s8) andRm(s8) are defined as

zm~s8!5zm1s8~pm1pm8 !22Rm~s8!, qm5pm2pm8 ,

m50,1,2,3

Rm~s8!5
1

2p (
n

As

~n11/2! FPm,n cosS 2ps8

s
~n11/2! D

1Qm,n sinS 2ps8

s
~n11/2! D G .

It will be more convenient, however, to work with the d
rivative of Rm(s8),

dRm~s8!

ds8
[jm~s8!

5
1

pAs
(

n
„Qm,n cos~vns8!2Pm,n sin~vns8!….

The exponent

e2g*0
sds8~]/]zm!Am„z~s!22i

0
sds8V~s8!…

can be written symbolically as

e2g*0
sds8~]/]zm!Am„z~s!22*0

sds8V~s8!…5eitr ln„dfm~s8!/dxn~s9!…

5detS dfm~s8!

dxn~s9!
D .

One has
Gc5 i E
0

`

dsE d4ze2 ism22 iqz1~ isq2/4!Pn

3E E d4Pnd4Qn

~2p!4
ei /2~Pn

2
1Qn

2
!e2 i *0

s
~p2V!2ds8

3detS dfm~s8!

dxn~s9!
D $m2 ig@p2V~s!#%

3~e2g*sF„z~s!22*0
sds8V~s8!…!1 .

Note, that one can obtain the determina
det„dfm(s8)/dxn(s9)… by inserting formally thed func-
tional,

dS E
0

s

Vm~s8!2gE
0

s

AmS z~s8!22E
0

s8
ds9V~s9! D D ,

~A2!

and integrating over theVm(s8):

Gc5 i E
0

`

dsE d4zE DVme2 ism22 iqz1~ isq2/4!Pn

3E E d4Pnd4Qn

~2p!4
e~ i /2!~Pn

2
1Qn

2
!e2 i *0

s
~p2V!2ds8

3$m2 ig@p2V#%dS E
0

s

Vm~s8!2gE
0

s

Am

3S z~s8!22E
0

s8
ds9V D D ~e2g*sF„z~s!22*0

sds8V…!1 .

Now it is natural to call the whole argument ofAm a new
of variableXm :

Xm~s8!5zm2s8qm22Rm~s8!22E
0

s8
„Vm~s9!2pm…ds9.

~A3!

It follows from the previous line that

1

2

dXm~s8!

ds8
1

qm

2
1

dRm~s8!

ds8
52„Vm~s8!2pm…. ~A4!

Squaring both sides of Eq.~A4!, one gets

1

4
Ẋm

2 ~s8!1
qm

2

4
1Ṙm

2 ~s8!1
1

2
qmẊm~s8!1qmṘm~s8!

1Ṙm~s8!Ẋm~s8!5~Vm~s8!2pm!2,

which yields, after integrating overds8 from 0 tos @the same
interval 0,s8,s over which the expansion ofRm(s) is de-
fined#,
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05
1

4E0

s

Ẋm
2 ds81

qm

2
„DXm~s!…1qm„DRm~s!…1E

0

s

ṘmẊmds

2S E
0

s

„Vm~s8!2pm…
2ds82

qm
2 s

4
2E

0

s

Ṙm
2 dsD , ~A5!

where DXm(s)5Xm(s)2Xm(0) and DRm(s)5Rm(s)
2Rm(0).

From the definition of the~functional! variableRm , one
has

E
0

s

Ṙm
2 ds5

1

2
~Pn

21Qn
2!, ~A6!

since thePncos@(2n11)ps8/s# andQnsin@(2n11)ps8/s# terms
are orthogonal on the interval 0<s8<s for the differentn’s.

Now one can see that all the three terms in parenthese
the second line of the expression~A4! appear in the argu
ments of the exponents in the expression~A1!, which allows
one to rewrite the Green’s function as

Gc5 i E
0

`

dsE d4ze2 ism22 iqzE DVm

3E dRme2~ i /4!*Ẋm
2 ds8e2 i ~q/2!DX2 iqDR2 i*ẊmṘmds8

3d„Xm2 f m
s ~X,A,R!…H m2 igmS dXm

2ds
1

qm

2
1

dRm

ds D J
3~e2g*sF~X!!1 .

One can collect the two integrals in the arguments of
exponents in the previous expression into a single phase

Gc5 i E
0

`

dsE d4ze2 im2sE DVm

3E dRme2 i *g~Ẋm/41Ṙm!dXme2 i ~q/2!DX2 iqDR2 iqz

3d„Xm2 f m
s ~X,A,R!…H m2 igmS dXm

2ds
1

qm

2
1

dRm

ds D J
3~e2g*sF~X!!1 ,

where the integration in*g(Ẋm/41Ṙm)dXm goes over a path
connecting theXm(0) and Xm(s)—the initial and the final
points of the evolution. To clarify the geometrical meani
of the phase of the exponente2 i (q/2)DX2 iqDR2 iqz, one con-
siders the explicit definitions of the functionsXm andRm :

Rm~0!5(
n

As

p~2n11!
Pm,n ,

Rm~s!5(
n

As

p~2n11!
~21!~2n11!Pm,n

52(
n

As

p~2n11!
Pm,n52Rm~0!.
in

e

So

DRm~s!5Rm~s!2Rm~0!522Rm~0!.

On the other hand,

Xm~0!5zm22Rm~0!,

Xm~s!5zm2sqm12Rm~0!22E
0

s

„Vm~s8!2pm…ds8,

so

DXm5Xm~s!2Xm~0!52sqm14Rm~0!

22E
0

s

„Vm~s8!2pm…ds8,

and, therefore,

2 i
qm

2
DXm2 iqmDRm5 i

qm
2 s

2
1qmE

0

s

„Vm~s8!2pm…ds8.

~A7!

On the other hand, again usingRm(s)52Rm(0), one can
write

Xm~s!52zm2sqm2Xm~0!22E
0

s

„Vm~s8!2pm…ds8

and

Xm~s!1Xm~0!52zm2sqm22E
0

s

„Vm~s8!2pm…ds8,

Therefore,

2qmFXm~s!1Xm~0!

2 G1qmzm

5 i
qm

2 s

2
1qmE

0

s

„Vm~s8!2pm…ds8. ~A8!

Comparing the right-hand sides of Eqs.~A7! and ~A8!, one
can see that

2 i
qm

2
DXm2 iqmDRm52qmFXm~s!1Xm~0!

2 G1qmzm ;

so finally,

i
qm

2
DXm1 iqmDRm1qmzm5qmFXm~s!1Xm~0!

2 G .
As one can see, the argument of the third exponentqmzm
appeared in the last expression. Thus,
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Gc5 i E
0

`

dsE d4ze2 im2sE DVm

3E dRme2 i *g~Ẋm/41Ṙm!dXmei ~qm/2!„Xm~s!1Xm~0!…

3d„Xm2 f m
s ~X,A,R!…H m2 igmS dXm

2ds
1

qm

2
1

dRm

ds D J
3~e2g*sF~X!!1 .

One can also simplify the measure of integration in
last expression in terms of the variablesXm andRm . As it is
easy to see, the variableXm is a combination of two func-
tionally independent parts:

Xm~s![S zm2sqm22E
0

s

„Vm~s8!2pm…ds8D 2~2Rm!

[Zm22Rm ,

where

dZm~s!

dRn~s8!
50, with Zm~0!5zm , and Rm~0!5(

n
Pn .

The total set of the integration variables in Eq.~A1! consists
of (d4zm ,DVm ,DRm). The integration overDV andd4zm in
formula ~A1! can be treated as an integration over the fu
tional variableZm :

d4zmDVm5DZm .

On the other hand, the functionals depend on the varia
Xm5Zm22Rm andRm . In order to integrate over these var
ables, one considers the following linear transformation
every moments8:

S Xm

Rm
D 5S 1 22

0 1 D S Zm

Rm
D .

Since this transformation is unimodular at every points8,
one can write

Gc5 i E
0

`

dse2 ims2E DXm

3E dRme2 i *g~Ẋm/41Ṙm!dXmei ~qm/2!„Xm~s!1Xm~0!…

3~e2g*sF~X!!1d„Xm2 f m
s ~X,A,R!…

3H m2 igmS dXm

2ds
1

qm

2
1

dRm

ds D J . ~A9!

In order to maintain the possibility of dropping certainPn
and Qn dependencies in Eq.~A9! as in the original expres
sion ~A1!, one has to make explicit the definition of theRm
by inserting an additionald functional,
e

-

es

t

dS Rm2 (
n51

N
1

As
FPm,n cosS ~2n11!ps8

s D
1Qm,n sinS ~2n11!ps8

s D G D , ~A10!

in the integral forGc . This d functional allows one to drop
the coefficientsPn and Qn ,n.N, in the expression for the
Green’s function while formally keeping the functional int
gration overRm . If N5`, then Eq.~A10! is not necessary
In the case if some of thePn’s andQn’s are omitted, then the
constraint~A10! can be important. However, the determ
nants, which it will produce afterṘm ~or jm) integration, are
always equal to 1, which means that the formula~A9!, as
well as its prototype, also allows one to drop certainPn and
Qn dependencies.

APPENDIX B: THE CASE OF THE RELATIVISTIC FREE
PARTICLE

To illustrate the ‘‘integration over the effective trajecto
ries’’ method, it is appropriate to present here a simple
ample of how Eqs.~7a! and~7b! work in some simple cases
The simplest example would be the Green’s function o
free particle,Am(x)50. For this case one has

Gc5
i

2mE
0

`

dtE DXmE Djm$m2 igmpm%

3e2~ i /2!*0
Tmdt1~ im/2!E

g

Ẋm
2 dte2 i „pm8 Xm~s!2pmXm~0!….

~B1!

The functionalS in the exponent must be evaluated along t
orbits of the system of equations,

dXm

dt
5

Pm

2m
22jm

or

Ẋm5
Pm

2m
2(

n

2

AT
@Qm,n cosvnt2Pm,n sinvnt#,

0<t<T,

wherevn5v(n1 1
2 ), v52p/T, andPm5pm1pm8 . The so-

lutions to this system of equations are given by

Xm~t!5zm1
tPm

2m
2

1

p (
n

2AT

~2n11!

3@Pm,n cosvnt1Qm,n sinvnt#,

wherezm is the integration constant, integration over whi
is assumed inDXm . Hence,

Xm~0!5zm2
1

p (
n

2AT

~2n11!
Pm,n ,
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Xm~T!5zm1
TPm

2m
1

1

p (
n

2AT

~2n11!
Pm,n ,

so

pm8 Xm~T!2pmXm~0!5zmqm1
TPmpm8

2m

1
ATPm

p (
n

Pm,n

~n11/2!
.

on

th
Using the relationvnT5(2n11)p, one has for the phase

m

2 E0

T

Ẋm
2 dt2

1

2E0

T

mdt52
i

2
mT1m(

n
~Pm,n

2 1Qm,n
2 !

1
PmAT

p (
n

Pm,n

n1 1
2

1
TPm

2

8m
,

and the Green’s function
Gc5
i

2mE
0

`

dTPnE d4zE E d4Pnd4Qn

~2p!4
e2~ i /2!mT1 im(n~Pm,n

2
1Qm,n

2
!1~ATPm /p!(n Pm,n /~n11/2!1TPm

2 /8m1 izmqm

3$m2 igmpm%e2 i ~TPmpm8 /2m1~ATPm /p!(nPm,n /~n11/2!!.
r
e
al

e-
The linearPm,n terms cancel out, and so

Gc5
i

2mE
0

`

dTPnE d4zE E d4Pnd4Qn

~2p!4

3e2~ i /2!mT1 im(
n

~Pm,n
2

1Qm,n
2

!1TPm
2 /8m1 izmqm

3$m2 igmpm%e2 iTPmpm8 /2m.

The Gaussian integral over the variablesPm,n ,Qm,n is trivial,
and thezm integration producesd function d(qm), due to
which one getsqm50, soPm52pm . Hence,

Gc5
i

2mE
0

`

dTe2~ i /2! mT$m2 igmpm%e2 iTpm
2 /m1 iTpm

2 /2m

5 i E
0

`

d
T

2m
$m2 igmpm%e2 i ~m21pm

2
!T/2m5

$m2 igmpm%

m1pm
2

5
1

gmpm1m
,

which is the Dirac equation Green’s function.

APPENDIX C: MOTION IN A CONSTANT MAGNETIC
FIELD

Another example provides a particle that moves in a c
stant electromagnetic fieldFmn5const, in which case the
ordered exponent (eg*sF)1 is just egsmnFnms. The vector po-
tentialAm is given byAm52 1

2 Fmnxn . Consider for simplic-
ity the case of the constant magnetic field in which case
vector potential in the symmetric gauge is

Ax52
H

2
y, Ay5

H

2
x, Az5A050.

The only nonzero component ofFmn is F3152F135H, so
smnFnm5s13H:
-

e

egs13F315e6 igsH.

It will be convenient to use the representation~7a!, and
evaluate the quantity

G̃c~x,x8!5 i E
0

`

dsE DXm

3E Djme2 im2se2 i *g~Ẋm/41Am!dXm

3d„Xm2 f m
s ~A!…~e2g*sF!1 ,

which produces the total Green’s function through

Gc~x,x8!5~m2gmDm!G̃c~x,x8!.

Using thed constraint, it is easy to integrate formally ove
the Xm(s). In this particular case it is possible to find th
stability matrixM explicitly and evaluate the pre-exponenti
determinant det(12M ). For the equations

Ẋm5Pm22jm22gAm5Pm22jm2gFmnXm ,

the solution is

Xm~s8!5~egFmns8!Xn~0!1PnFnm
21

22egFmns8E jm~s9!egFmns9ds9

and

detS dXm~s8!

dXm~0! D5det~12egFmns8!.

After the Xm integration is carried through, one has to int
grate over the solutions to the equations~3!, which in this
case are
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dX1

ds8
5

P1

2
22j11gHX2 ,

dX2

ds8
5

P2

2
22j22gHX1 ,

~C1!

dX3

ds8
5

P3

2
22j3 ,

dX0

ds8
5

P0

2
22j0 .

The last two equations forX3 and X0 are separated an
coincide with the free particle case. The first two equatio
yield

Ẍ11v0
2X15

v0P2

2
22j̇122v0j2 ,

Ẍ21v0
2X252

v0P1

2
22j̇212v0j1 ,

wherev05gH. By definition ~7!,

jm5
1

As
(

n
@Qm,n cosvns82Pm,n sinvns8#, ~C2!

wherevn5v(n11/2),v52p/s, and, therefore,

Ẍ11v0
2X15

v0P2

2
2

2

As
(

n
~v0Q2,n2vnP1,n!cosvns8

1
2

As
(

n
~v0P2,n1vnQ1,n!sinvns8,

Ẍ21v0
2X252

v0P1

2
1

2

As
(

n
~v0Q1,n1vnP2,n!cosvns8

1
2

As
(

n
~vnQ2,n2v0P1,n!sinvns8.

The solutionsXm(s) to the equations above are given by

X15V sin~v0s81w!1
P2

v0

1
2

As
(

n
FvnP1,n2v0Q2,n

v0
22vn

2
cosvns8

1
v0P2,n1vnQ1,n

v0
22vn

2
sinvns8G ,
s

X25V cos~v0s81w!2
P1

v0

1
2

As
(

n
Fv0Q1,n1vnP2,n

v0
22vn

2
cosvns8

1
vnQ2,n2v0P1,n

v0
22vn

2
sinvns8G .

It is convenient to introduce new coefficients~the new vari-
ables of integration! C1n ,C2n ,S1n ,S2n as

X15V sin~v0s81w!1
P2

v0

1
2

As
(

n
~C1n cosvns81S1n sinvns8!, ~C3!

X25V cos~v0s81w!2
P1

v0

1
2

As
(

n
~C2ncosvns81S2nsinvns8!,

where

Q1n5v0C2,n2vnS1,n, P1n52v0S2,n2vnC1,n ,
~C4!

Q2n52v0C1,n2vnS2,n, P2n5v0S1,n2vnC2,n .

The Jacobian of the transformation (P1n ,P2n ,Q1n ,Q2n)
→(C1n ,C2n ,S1n ,S2n) is J5(v0

22vn
2)2.

It is easy to observe that Eqs.~C1! and their solutions are
equivalent to the ones that would correspond to the actio

S5E
g

Ẋm
2

4
1

v0
2Xm

2

2
dt,

of a simple harmonic oscillator. The above expression a
the one in the exponent of Eq.~C1! are equal up to the tota
derivative. Therefore, the dynamical properties of these s
tems are the same. The derivation of the functionG̃c ,

G̃c52E
0

` ds

~4ps!2

gHs

singHs

3e2 i ~ t2t8!2/4s1 i ~x382x3!2/4s

3ei [ ~gH/4!„~x12x18!21~x22x28!2
…cot gHs1~gH/2!~x11x18!~x22x28!],

follows the standard procedures@9#, and produces the spec
trum,

E22m2c22pz
25gH~2n11!2eHs,

of the Dirac equation energy spectrum of a chargeg moving
in a constant magnetic fieldH.
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